Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads
نویسندگان
چکیده
BACKGROUND Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. METHODS To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. RESULTS The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on electrical stimulation. CONCLUSIONS We demonstrated a method for analyzing effects of coupled magnetic field interference on implantable neurostimulator system and its electrodes which could be used by device manufacturers during the design and testing phases of the development process.
منابع مشابه
Modeling of radio-frequency induced currents on lead wires during MR imaging using a modified transmission line method.
PURPOSE Metallic implants may cause serious tissue heating during magnetic resonance (MR) imaging. This heating occurs due to the induced currents caused by the radio-frequency (RF) field. Much work has been done to date to understand the relationship between the RF field and the induced currents. Most of these studies, however, were based purely on experimental or numerical methods. This study...
متن کاملStreaming current magnetic fields in a charged nanopore
Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as ...
متن کاملM ar 2 00 6 Theory of Spin Hall Effects
Spin Hall effects are a collection of phenomena, resulting from spin-orbit coupling, in which an electrical current flowing through a sample can lead to spin transport in a perpendicular direction and spin accumulation at lateral boundaries. These effects, which do not require an applied magnetic field, can originate in a variety of intrinsic and extrinsic spin-orbit coupling mechanisms and dep...
متن کاملTheory of Spin Hall Effects in Semiconductors
Spin Hall effects are a collection of phenomena, resulting from spin-orbit coupling, in which an electrical current flowing through a sample can lead to spin transport in a perpendicular direction and spin accumulation at lateral boundaries. These effects, which do not require an applied magnetic field, can originate in a variety of intrinsic and extrinsic spin-orbit coupling mechanisms and dep...
متن کاملSpectrum of Magnetic Dissipation and Horizontal Electric Currents in the Solar Photosphere
A proxy for horizontal electric currents in the solar photosphere was suggested. For a set of evolving active regions (ARs) observed with Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) in the high resolution mode, the dissipation spectrum, kE(k), and the spatial structure of dissipation, i.e., the Stokes dissipation function ε(x, y), were calculated from the observed B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2011